Characterization of alpha-soluble N-ethylmaleimide-sensitive fusion attachment protein in alveolar type II cells: implications in lung surfactant secretion.
نویسندگان
چکیده
N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (alpha-SNAP) are thought to be soluble factors that transiently bind and disassemble SNAP receptor complex during exocytosis in neuronal and endocrine cells. Lung surfactant is secreted via exocytosis of lamellar bodies from alveolar epithelial type II cells. However, the secretion of lung surfactant is a relatively slow process, and involvement of SNAP receptor and its cofactors (NSF and alpha-SNAP) in this process has not been demonstrated. In this study, we investigated a possible role of alpha-SNAP in surfactant secretion. alpha-SNAP was predominantly associated with the membranes in alveolar type II cells as determined by Western blot and immunocytochemical analysis using confocal microscope. Membrane-associated alpha-SNAP was not released from the membrane fraction when the cells were lyzed in the presence of Ca2+ or Mg2+ATP. The alkaline condition (0.1 M Na2CO3, pH 12), known to extract peripheral membrane proteins also failed to release it from the membrane. Phase separation using Triton X-114 showed that alpha-SNAP partitioned into both aqueous and detergent phases. NSF had membrane-bound characteristics similar to alpha-SNAP in type II cells. Permeabilization of type II cells with beta-escin resulted in a partial loss of alpha-SNAP from the cells, but cellular NSF was relatively unchanged. Addition of exogenous alpha-SNAP to the permeabilized cells increased surfactant secretion in a dose-dependent manner, whereas exogenous NSF has much less effects. An alpha-SNAP antisense oligonucleotide decreased its protein level and inhibited surfactant secretion. Our results suggest a role of alpha-SNAP in lung surfactant secretion.
منابع مشابه
Effect of cholesterol depletion on exocytosis of alveolar type II cells.
Alveolar epithelial type II cells secrete lung surfactant via exocytosis. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) are implicated in this process. Lipid rafts, the cholesterol- and sphingolipid-rich microdomains, may offer a platform for protein organization on the cell membrane. We tested the hypothesis that lipid rafts organize exocytotic proteins in type...
متن کاملSyntaxin 1A is transiently expressed in fetal lung mesenchymal cells: potential developmental roles.
Lung development is a complex process in which epithelial-mesenchymal interactions play a key role. A conserved secretory apparatus, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, is essential for exocytosis in many cell types. Syntaxins, located on the terminal plasma membrane (T-SNAREs), are a critical component of the secretosomal complex involved ...
متن کاملA critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion.
The molecular mechanisms that regulate membrane targeting/fusion during platelet granule secretion are not yet understood. N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAREs (SNAP receptors) are elements of a conserved molecular machinery for membrane targeting/fusion that have been detected in platelets. We examined whether NSF, an ATPase that ...
متن کاملReorganization of cytoskeleton during surfactant secretion in lung type II cells: a role of annexin II.
The secretion of lung surfactant requires the movement of lamellar bodies to the plasma membrane through cytoskeletal barrier at the cell cortex. We hypothesized that the cortical cytoskeleton undergoes a transient disassembly/reassembly in the stimulated type II cells, therefore allowing lamellar bodies access to the plasma membrane. Stabilization of cytoskeleton with Jasplakinolinde (JAS), a ...
متن کاملSyntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.
Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 29 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2003